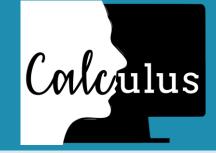


Text-based Control for Image Manipulation



Maria Trusca

Faculty of Engineering Science

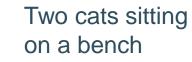
Department of Computer Science

Language Intelligence and Information Retrieval

Established by the European Commission

Introduction

- Aim: develop a method that capture relational structure of language and the geometric aspects of visual data to perform image editing.
- Text-based semantic image editing
 - Current limitations:
 - The background is usually altered;
 - The long and elaborate prompts are difficult to implement as instructions for image editing.



Two cats sitting

on a sofa

Overview

- Proposed model for addressing the current limitations;
- Experimental Setup:
 - Baselines;
 - Datasets;
 - Metrics;
- Results:
 - Qualitative and quantitative evaluation;
- Conclusion.

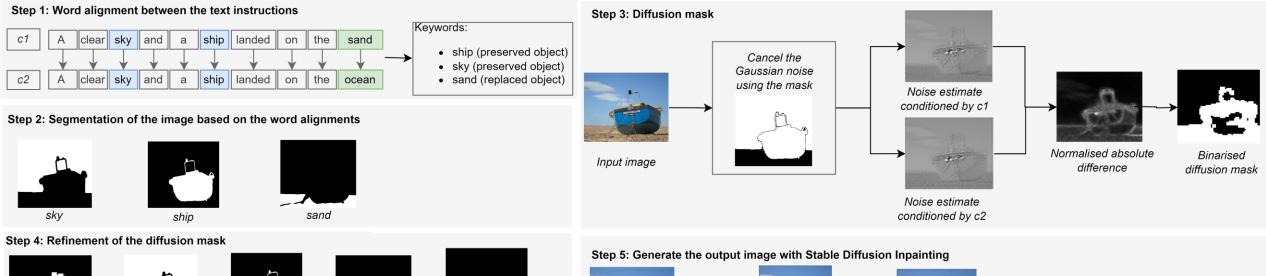
Proposed Model: Overview

+

sand

ship

sky



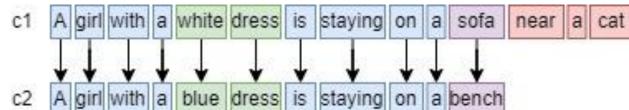
erc

Output Image

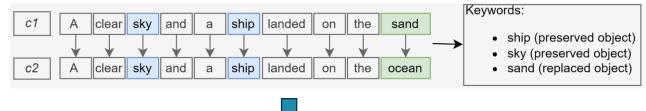
conditioned by c2

Diffusion mask

- Step 1: Word alignment between the text instructions (*semi-Markov CRF* model Lin et al. (2019))
 - Given two text instructions c_1 and c_2 , we set the following assumptions:
 - Editable regions are indicated by:
 - Shared nouns with different modifiers (dress);
 - Substituted nouns (bench).
 - Non-editable regions are indicated by:
 - Shared nouns without modifiers / with identical modifiers (girl);
 - Deleted nouns (cat).

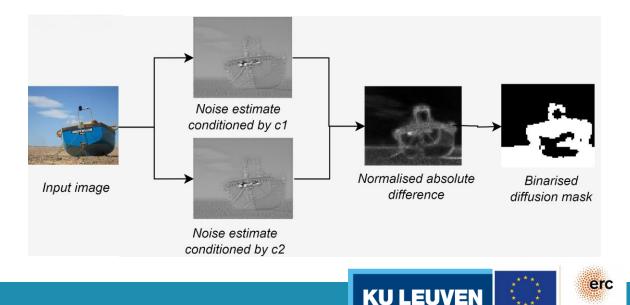


- Step 2: Segmentation of the image based on the word alignments
 - The word alignments computed at the first step are used to indicate the editable and non-editable objects in the image. The regions are detected using *Grounded-SAM.*
 - Considering the text instructions:

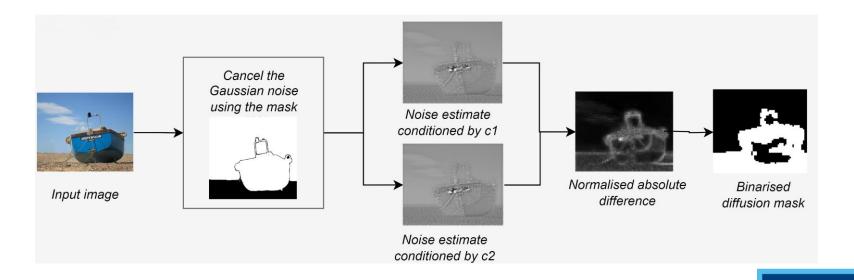


• We use *Grounded-SAM* to identify the regions of the keywords:

- Step 3: Diffusion mask
 - Besides the editable/non-editable regions detected based on the word alignments, a diffusion mask is used to ensure:
 - Coherence of the output image with respect c_2 ;
 - · Coping with the replacement of objects of different sizes.
 - Computation of diffusion mask:
 - Two noise estimates e₁ and e₂ are computed by running two diffusion models over the input image and each of the text instructions c₁ and c₂;
 - Diffusion mask is obtained after the normalization and binarization of the absolute difference between e_1 and e_2 .



- Step 4.1: Integration of the regions detected based on the word alignments in the diffusion process.
 - The noise variable of the forward process is cancelled for the non-editable regions detected based on the word alignments (ship and sky).



erc

KU LEUVEN

- Step 4.2: Integration of the diffusion mask with the regions detected based on the word alignments
 - The diffusion mask with noise cancellation gives the initial context for the image editing.
 - The extension or the reduction of the diffusion mask by the regions detected based on the word alignments improves the precision of the <u>final mask</u>.

• Step 5: Use the refined diffusion mask and the Stable Diffusion Inpainting to edit the input image based on the text instruction c_2 .

Experimental Setup

- Baselines: FlexIT, ControlNet, Prompt-to-Prompt, DiffEdit
- Datasets:
 - BISON₀₇
 - DREAM
- Evaluation Metrics:
 - Text-based metrics: CLIP score
 - Image-based metrics: FID, LPIPS and pixel-wise Mean Square Error (PWMSE).

• How well can the *DM-Align* model edit a source image considering the complexity of the text instruction?

- Image-based metrics: DM-Align outperforms all other baselines, especially for the case of long and elaborate text instructions ($B|SON_{07}$)
- Text-based metrics: *FlexIT* is the best baseline as the model is built on top of the CLIP model.

		Image-based			Text-based
		FID ↓	LPIPS ↓	PWMSE ↓	CLIPScore [↑]
BISON ₀₇	FlexIT	72.44 <u>+</u> 0.15	0.49 <u>+</u> 0.00	42.34 <u>+</u> 0.02	0.88±0.00
	DiffEdit	82.46 <u>+</u> 0.26	0.46 <u>+</u> 0.00	50.96 <u>+</u> 4.07	0.79±0.00
	ControlNet	78.50 <u>+</u> 0.26	0.42 <u>+</u> 0.00	52.16 <u>+</u> 0.78	0.77 <u>+</u> 0.00
	PtP				0.77±0.00
	DM-Align	60.05±1.35	0.27±0.00	34.72±0.55	0.78±0.00
DREAM	FlexIT	147.56±1.34	0.71 <u>±</u> 0.00	53.49 <u>+</u> 0.01	0.86±0.00
	DiffEdit	125.71 <u>+</u> 1.62	0.71 <u>+</u> 0.00	53.52 <u>+</u> 0.84	0.77±0.00
	ControlNet	140.18 <u>+</u> 1.87	0.72 <u>+</u> 0.00	53.78 <u>+</u> 0.60	0.77±0.00
	PtP				0.78±0.00
	DM-Align	110.20±0.30	0.69±0.00	50.62±0.25	0.78±0.00

KU LEUVEN

- How well does the DM-Align model preserve the background?
 - *BISON*₀₇ compared with the best baselines improves:
 - FID by 96.26 %
 - LPIPS by 116.67%
 - *PWMSE* by 39.26%
 - DREAM:
 - *FID* by 55.64%
 - LPIPS by 4.51%
 - *PWMSE* by 13.22%

- Qualitative Evaluation
 - c₁ A man standing next to a baby elephant in the city. c₂. A man standing next to his elephant on the beach.

- Qualitative Evaluation
 - c₁ A vase filled with red and white flowers. c₂. A vase filled with lots of colorful flowers.

Initial image

DM-Align

ControlNet

DifiEdit

FlexIT

- Qualitative Evaluation
 - c₁ A man eating a hot dog next to a waterway.c₂. A man eating a hot dog at a crowded event.

Initial image

DM-Align

ControlNet

DifiEdit

FlexIT

- Human Qualitative Evaluation
 - Randomly select 100 images from BISON₀₇ and ask Amazon MTurk annotators to evaluate the editing process using a 5-point Likert scale based on the following aspects:
 - Q1: quality of the editing process based on the text instruction *c*₂;
 - Q2: preservation of the background;
 - Q3: the quality of the editing process in terms of compositionality, sharpness, distortion, color and contrast.

	Q1 ↑	Q2 ↑	Q3 ↑
FlexIT	3.77	4.12	3.83
DiffEdit	3.74	3.89	3.86
ControlNet	3.41	3.77	3.90
PtP	2.24	1.98	2.18
DM-Align	3.89	4.35	3.95

Conclusions and limitations

- Conclusions:
 - Due to the differentiation between the changed and unchanged content, the outputs generated by *DM-Align* have a high level of explainability.
 - Compared with the baselines, *DM-Align* demonstrate a better capability to keep the background and to edit images using elaborate and long text instructions
- Limitations:
 - While *DM-Align* can implement operations like insertion, deletion and replacement of objects, the model has difficulties when trying to change the position of objects.

Publications

- Related Calculus publications / work in progress
 - Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie Francine Moens & Aurelien Lucchi (2020). Convolutional Generation of Textured 3D Meshes. In Proceedings of the Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS).
 - Wolf Nuyts, Maria Trusca, Jonathan Thomm, Robert Hönig, Thomas Hofmann, Tinne Tuytelaars and Marie-Francine Moens (2024). Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control (will be submitted soon).
- Current work:
 - Maria Trusca, Tinne Tuytelaars and Marie-Francine Moens (2024). DM-Align: Text-based semantic image editing using cross-modal alignments (under review).

