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Opening the Discussion on Joint Visual and Linguistic 
Structures
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Introduction
• Structures, interactions, and relations 

in the physical world are varied and complex

• Humans quickly identify and understand 
relations between objects

• Humans describe the world with natural 
language or structured representations

• Improvements in foundation models allow for
better generation of text and images

Introduction
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Outline

• The Structure of Language

• The Structure of Visual Data

• Investigating correlations between the Structures

• Discussion and Open Questions
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• Several types of structures available
• Most based on Natural Language with grammar rules:

• Constituency Trees 
• Phrase structured hierarchical tree
• Described by CFG

• Dependency Trees
• Grammatical relationships between words
• Universal grammar across languages
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Language Grammars
Structure of Language

4



• Designed as structured tree over
objects in the image

• Follows the dependency tree, 
but truncated to entities that appear
in the image

• Created to evaluate encoded
structures in pretrained 
multimodal-BERT models
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Scene Trees
 Structure of Language
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• A visual graph has its own unique language to 
describe the world

• Common example is Visual Genome (VG)

• Goals and Arguments:
1. Explaining relations is cognitive in nature
2. Better distinguish between images
3. Ground visual concepts to language
4. Formalized representations of image 

components
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Scene Graphs
 Structure of Language

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L., Shamma, D.A., 
Bernstein, M.S., & Fei-Fei, L. (2016). Visual Genome: Connecting Language and Vision Using Crowdsourced Dense 
Image Annotations. International Journal of Computer Vision, 123, 32 - 73.
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 Structure of Language

VG Creation
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VG Creation

1. Humans create many short 
descriptions

2. Humans convert these into 
objects and relations 

3. These are merged into graphs

4. The graphs are joined

 Structure of Language
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Structure of Visual Data

• How do humans perceive and 
process the physical world?

• People have semantic and episodic 
knowledge

• Investigated through visual search:
• Humans perform search tasks 

tracking their eye movement
• They use prior knowledge while 

searching

Structure of Visual Data
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Structure of Visual Data
Structure of Visual Data

10 Hong, Y., Li, Q., Zhu, S., & Huang, S. (2021). VLGrammar: Grounded Grammar Induction of Vision and Language. 2021 
IEEE/CVF International Conference on Computer Vision (ICCV), 1645-1654.

• Episodic knowledge is about 
familiarity with the room

• Semantic knowledge is a 
common pattern or structure of 
scenes

• This can form a grammar

• e.g.
• furniture, roads, rooms
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The Structure of Visual Data

• Episodic knowledge is about 
familiarity with the room

• Semantic knowledge is a 
common pattern or structure of 
scenes

• This can form a grammar

• e.g.
• furniture, roads, rooms

Structure of Visual Data
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Structure of Visual Data
Structure of Visual Data
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• Episodic knowledge is about 
familiarity with the room

• Semantic knowledge is a 
common pattern or structure of 
scenes

• This can form a grammar

• e.g.
• furniture, roads, rooms
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Human responses to errors
• Using EEG studies able to compare brain responses

• Seeing semantic inconsistencies cause similar 
responsive between language and visual data

• Such studies indicate similar 
responses, but there is no evidence 
that the processing is equal

 

Investigating correlations between the Structures
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Experiments
• Dataset:

• 145 images from overlap between Flickr30k-entities and VG
• 483 captions
• Spacy Parser with Berkley neural parser for creating dependency and 

constituency trees

• Metrics:
• representational similarity analysis (RSA)

• computes a dissimilarity matrix (distances in graphs) and performs Spearman 
rank correlation between matrices

Investigating correlations between the Structures
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Experiments
• Compare the visual distances of object regions with objects/nouns in the 

language graph

• Positive correlation in 
almost all experiments

• Head nouns in text can be further apart
• The scene tree is reduces to only nouns, making it flatter
• Scene graphs describe direct relations between object

Q1 Median Q3
Const. Tree -0.03 0.55 0.81

Dep. Tree -0.03 0.53 0.81
Scene Tree 0.00 0.69 0.89

Scene Graph 0.88 0.99 1.00

Investigating correlations between the Structures
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• Most studies on visual grammars are from psychological studies or very 
domain specific

• What can we learn from more data driven studies?
• Can we improve our understanding of human processing?
• Can we find correlations in structured processing between modalities?

• We showed correlations between language and the physical world
• Did language influence how humans see the world? or vice versa?
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 Discussion and Open Questions
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• Visio-linguistic models can find regions without objects present or show 
appropriate regions for verbs

• Similar capabilities to humans

• What structures did CLIP 
learn?

• Semantic or Episodic 
knowledge?

 Discussion and Open Questions
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• Dependency trees are
encoded in BERT models

• The scene tree is not encoded in 
BERT models

• The training paradigm does not 
encourage learning of structure
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Latent trees in visio-linguistic models
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Scene Tree Examples



1. Humans create many short 
descriptions

2. Humans convert these into 
objects and relations 

3. These are merged into graphs

4. The graphs are joined
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2 - VG Creation
 Structure of Language
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3 - Structure of Visual Data



• Scene trees are based on language, making it difficult to study visual 
structures

• The simple captions with the reduction to head nouns 
creates a flat tree

• While scene graph distances are strongly correlated with the visual 
distances, they can be very dense

• Parts can be derived from common knowledge
• No rules and restrictions on ordering relations or labels used
• Difficult to study graph patterns and hierarchical nature of objects
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6 - Discussion and Open Questions
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